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Abstract
The asymmetric exclusion process is a well-established model in statistical
physics that exhibits non-equilibrium phase transitions. It has received
considerable attention of late as it is widely applicable to problems in molecular
biology involving the transit of component parts along specified tracks or
pathways. In this paper we use a self-consistent mean-field approach, backed
up by Monte Carlo simulations, to examine the case where the exit from such
a track is ‘gated’ by the presence of some external component that is capable
of binding and unbinding from an additional site to the track; exit from the
path is only possible by the bound presence of this component. We not only
compute the relevant phase diagrams for this instance both in terms of the exit
and entrance rates but also the binding and unbinding rates of the ‘gate’ and
comment on this model’s applicability to problems in biology.

PACS numbers: 05.40.−a, 87.15.a, 87.15.hj

1. Introduction

The asymmetric exclusion process has become a ubiquitous theoretical substrate for examining
non-equilibrium transport problems in biology. Applications have included tracked molecular
motors [1], protein kinetics [2] and fungal hyphae [4]. There is now a substantive body
of existing work that details the different phases of the model, reviewed recently [5], with
additional rigour provided by exact calculations performed nearly 15 years ago [6]. Of
particular interest for this paper is the well-established self-consistent mean-field approach
[7, 8] that allows the exact results to be leveraged to provide solutions in both heterogeneous
and compound configurations. This approach was originally introduced for defects with the
chain [8–10], but has subsequently been used for combining symmetric exclusion processes
(diffusive-like) in series [11] and in parallel [12, 13].

Whilst transport is the focus of these models, of equal interest to applications in molecular
biology, for example, are reactions at the entrance and terminus of channels that obey
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asymmetric exclusion dynamics. Ultimately, in applications in this area it is the interactions
occurring as a consequence of transport, for example as in the hyphae growth case [4], that
will determine the effectiveness and realism of the modelling approach. To this end we
imagine a situation where the channel is transporting a useful particle or packet to an end
point where a receptor is potentially awaiting which will transport the particle to some further
function. Rather than assuming regular periodic conditions [14] we assume that a fixed pool
of receptors bind on and bind off the terminus with some prescribed rate. If a receptor is
successfully bound, then a particle may exit the track accompanied by the receptor. We also
consider the case where similar dynamics occur at the entrance to the channel; as well as the
most general situation where both operate simultaneously. A related effect is where instead
of transporting the incoming or outgoing particles, the receptor or initiator only mediates the
exit or entrance; in effect the particles are simply diffusable input or output nozzles for the
non-equilibrium track. For example, input nozzles would be an apt approximation for sigma
factors, if the TASEP was representing bacterial transcription.

In this paper we address these simple gating effects, and show how they impact on the
dynamics of the channel. We first describe our models and then show self-consistent mean-
field calculations for the resultant phases. We then present our modelling results and compare
them to theory, highlighting where, and the manner in which, the simple MF calculation
breaks down. Finally, we summarize our findings and suggest some additional extensions and
applications.

2. The model

We consider a linear system consisting of L sites, indexed by i = 1, 2, . . . , L, within which
particles are able to hop in single rightward steps through the system. Exclusion dynamics
apply, so hops are only permitted if the subsequent site is empty. We take the inter-site hops
to set the timescale in the model, so they hop at rate 1. Particles are injected into the system
at the left-hand edge with rate α if site 1 is vacant and are removed with rate β if site L is
occupied. This system describes the standard TASEP model for which an exact solution is
known [6] and has three distinct phases: a max current (MC) phase, a low-density (LD) phase
and a high-density (HD) phase. These are defined by the current (J), the bulk density, lbulk, and
the densities at the beginning (l1) and end (lL). The results can be mathematically summarized
[5, 6, 8] as follows: where α � 1

2 and β � 1
2 then the system is MC with

J = 1

4
, l1 = 1 − 1

4α
, lL = 1

4β
, lbulk = 1

2
; (1)

where α < 1
2 and β � α the bulk properties are dictated by the entrance conditions and the

system is LD with

J = α(1 − α), l1 = α, lL = α(1 − α)

β
, lbulk = α; (2)

where β < 1
2 and α � β the bulk properties are dictated by the exit conditions and the system

is HD with

J = β(1 − β), l1 = 1 − β(1 − β)

α
, lL = 1 − β, lbulk = 1 − β, (3)

which together give the well-known phase diagram with second-order transitions between MC
and the other two phases and a first-order transition between the LD and HD phases.

The self-consistent mean-field approach, introduced by [7], is able to leverage non-exact,
but internally consistent solutions in more complex situations by assuming the differing
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Figure 1. A simple diagrammatic representation of the entrance gate on a TASEP system. The
possible processes that could occur in particular configuration when the gate is closed (upper) or
open (lower). Note that if site L were unoccupied, then the process of simultaneous binding and
detachment from the gate site with rate β would no longer be possible and instead the dynamics of
the receptor binding would continue independently.

possible configurations of the trackway and the requisite conditions and then seeking
contradictions or algebraic solutions dependent on the boundary conditions. This method
is elegant and demonstrates the power of an exact solution; its weakness is that it ignores
possible correlations from boundary conditions or internal defects that may project into the
bulk sufficiently to alter the phase diagram. This of course is more prevalent close to transition
boundaries where correlation lengths diverge. Of particular interest is how this method can
be used to link together different TASEP trackways such that the interactions between them
determine the bulk properties; this is implicitly the manner in which the defect site works as
the defect site provides the link between the two halves of the track [8].

The novel feature of the model we consider is the addition of binding and unbinding
of separate components, which we call the receptor if binding to the end of the track and
the initiator if binding to the beginning of the track, that mediate the exit and entrance of
the particles on the track. The additional components bind to separate, off-lattice, sites, the
occupation of which we denote χa at the entrance and χb at the exit. When a receptor (initiator)
is bound to the terminating (starting) gate, site particles are able to exit (enter) as in the regular
TASEP. The dynamics of this binding are as follows: the exit gate opens with rate bF as a
receptor binds and closes with rate bB as it unbinds. If the gate is ‘open’, that is with a receptor
bound to it, the particles at site L, if present, leave the system with rate β. Crucially the
receptor also unbinds on this event—the particles close the gate behind them—motivated by
the receptor now performing some task with the particle that is has now gained. In summary

• 10 → 01 with rate 1
• 0 → 1 at site 1 with rate α

• ∅ (off lattice) � χb (off lattice) with rates bF and bB

• χ → ∅ (off lattice), 1 → 0 at site L with rate β.

This model is depicted diagrammatically in figure 1. The entrance gate operates in a similar
fashion but with rates aF and aB and the particle enters the system with rate α, subject to a
vacancy at site 1. It also unbinds when the particle enters the system. The simpler case of the
diffusable nozzles follows an identical scheme to that described above, but now the off-lattice
reaction (χ → ∅) no longer occurs in tandem with exit.

3



J. Phys. A: Math. Theor. 42 (2009) 445002 A J Wood

3. Theoretical analysis

3.1. Gated exit only

We analyse the model described above using self-consistent mean-field theory [8]. The first
example consists of where the system is fed with a constant driving rate α and the exit is gated
as described above. The behaviour of the average occupation of the gate 〈χb〉 can be expressed
simply as

d〈χb〉
dt

= (1 − 〈χb〉)bF − 〈χb〉(bB + βlL) (4)

and therefore at steady state we have

〈χb〉 = bF

bF + bB + βlL
(5)

where we are assuming that correlations from this process do not impact on the system; we
shall return to this later. In the slightly simpler case of the binding and unbinding exit nozzles,
the exit condition is uncorrelated with the bulk and the βlL term is dropped. This leads to
a simple rescaling of the exit rate at steady state

(
β �→ β bF

bF +bB

)
. However, this model has

an identical description in terms of improved mean-field theory at the next order (described
below) as to our main system of interest which implies that correlations induced by the exit
conditions are identical.

The analysis now proceeds by assuming each of the different phases in turn for the model
with an exit rate of β〈χb〉 which results in an equation that must be solved for 〈χb〉. For
simplicity we now drop the angle bracket notation in our expressions for χb (and later χa)

except where explicitly indicated. We find that where α � 1
2 , β � 1

2 +
2bB + 1

2
4bF −1 and bF > 1

4 the
system is MC

J = 1

4
l1 = 1 − 1

4α
lL = bF + bB

β(4bF − 1)
lbulk = 1

2
χb = bF − 1

4

bF + bB

; (6)

where α < 1
2 , β > α(bF +bB)

bF −α(1−α)
and bF > α(1 − α) the system is LD with

J = α(1 − α) l1 = α lL = α(1 − α)(bF + bB)

β(bF − α(1 − α))
lbulk = α χb = bF − α(1 − α)

bF + bB

(7)

and where β < α(bF +bB)

bF −α(1−α)
, β < 1

2 +
2bB + 1

2
4bF −1 and bF > 1

4 the system is HD with

J = bF +
bF + bB

2β2

(√
(bF + bB + β)2 − 4bF β2 − (bF + bB + β)

)

l1 = 1 − bF

α
+

bF + bB

2αβ2

(√
(bF + bB + β)2 − 4bF β2 − (bF + bB + β)

)

lL = 1

2
− bF + bB

2β
+

1

2β

√
(bF + bB + β)2 − 4bF β2

lbulk = 1

2
− bF + bB

2β
+

1

2β

√
(bF + bB + β)2 − 4bF β2

χb = bF − α(1 − α)

bF + bB

.

(8)

These analytic results are used to construct the solid lines for specific cases in both figure 2
and figure 3.
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Figure 2. Phase portrait (left) for L = 300. Exit conditions are bF = 4.0 and bB = 2.0; entrance
is a standard TASEP. Solid lines indicate the analytically computed phase boundaries ((6)–(8)).
The circles indicate where a discontinuity was fitted from plots of ρ(β), α fixed, diamonds where
the dependences are reversed. A sample plot is shown of ρ(β), α = 0.38, comparing the predicted
and simulated curves.
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Figure 3. Phase portrait for L = 300. Exit conditions are bF = 0.4 and bB = 0.2; entrance is a
standard TASEP. Once more a sample plot is shown of ρ(β), α = 0.38, comparing the predicted
and simulated curves. The simulation results are shown as red circles (computationally fitted) and
blue diamonds (fitted by hand). The normal theoretical predictions ((6)–(8)) are shown with a solid
line and the improved mean-field predictions ((12)–(14)) are shown with a dashed line. It is clear
that the results correspond to the predictions for low alpha, but as alpha increases the improved
MF results fit the curve better. Then as alpha increases still further the simulation results diverge
once more. The implication is that the system is unable to sustain a maximal current phase as
correlations into the bulk increase with importance. The simulation results support the boundary
asymptoting at ≈ α = 0.43.

(This figure is in colour only in the electronic version)
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We anticipate that there will be significant deviations from these mean-field results where
correlations of the exit site with the track become important and penetrate into the bulk. We
can confirm this by systematically including the effects of including these correlations back
into the system from the exit site using an improved version of the self-consistent mean-field
theory previously used by Sugden and Evans in a system with similar complications [10, 15].
We perform this calculation by considering our TASEP system to run from site 1 to site L − 1
and treat the last site, along with the exit site and the correlation between the two separately.
The equations for the occupation of the gate site and the last track site are

d〈χb〉
dt

= (1 − 〈χb〉)bF − 〈χb〉(bB + βlL) (9)

d〈lL〉
dt

= 〈lN−1(1 − lN )〉 − β〈lLχb〉 (10)

respectively and the equation for the correlation between the last site and the receptor site
can be found by considering possible reactions into and out of the state when both sites are
occupied:

d〈lLχb〉
dt

= 〈lN−1(1 − lN )χb〉 + bF 〈lN (1 − χb)〉 − bB〈lLχb〉 − β〈lLχb〉. (11)

The remainder of the trackway will now be in a max current phase if 1 − lL � 1
2 , α � 1

2 ,
and then 〈lN−1(1 − lN )〉 = 〈lN−1〉(1 − 〈lN 〉) = 1

4 . The average occupation of the gate site is
unchanged and is given by (6) but now the equation for the occupation of 〈lL〉 is quadratic.
From this we can deduce that the max current phase is present when

α � 1

2
; β � (2(bF + bB) + 1)(bF + bB)

4bF − 1 + (bF + bB)(4bF − 2)
(12)

and via similar analysis the low-density phase (LD) is present when

α <
1

2
and β >

α(bF + bB)(1 − α + bF + bB)

bF − α(1 − α) + (bF + bB)(bF − α)
(13)

and HD is present when

β <
(2(bF + bB) + 1)(bF + bB)

4bF − 1 + (bF + bB)(4bF − 2)
and β <

α(bF + bB)(1 − α + bF + bB)

bF − α(1 − α) + (bF + bB)(bF − α)
,

(14)

all of which create significant shifts in the phase diagram when bF and bB are small. The
effect of these changes can clearly be seen in figure 3. The significance of correlations is
entirely determined by the relative size of bF over its minimum value

(
1
4

)
. This can be seen

by examining the connected part of the correlation function 〈lLχb〉c = 〈lLχb〉 − 〈lL〉〈χb〉
which vanishes in the limit bF � 1

4 independent of the value of bB and β. This statement is
equivalent to saying that an effective out rate can be defined, and that our system collapses
onto the diffusable nozzles case.

3.2. Gated entrance

This situation proceeds identically to that above, guided by the particle–hole symmetry that
tells us that the system with gated entry with entrance rate α and fixed exit β for a particle is
identical to a system for holes with fixed entry alpha and gated exit α. For this reason we will
not repeat the results outlined above.

6
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3.3. Gated entrance and exit

The most general situation is algebraically more complex but technically no more difficult.
For brevity we quote the boundaries in terms of the predicted value for χa and χb and we
note that aF , bF > 1

4 in all cases. The occupation of the entrance gate χa is described by a
formula similar to (4) but conditioned on the emptiness of the first lattice site rather than the

occupations of the last. We find that where α � 1
2 +

2aB + 1
2

4aF −1 , β � 1
2 +

2bB + 1
2

4bF −1 the system is MC

J = 1

4
l1 = 1 − 1

4αχa

lL = 1

4βχb

lbulk = 1

2
χa = aF − 1

4

aF + aB

χb = bF − 1
4

bF + bB

;
(15)

where α < 1
2 +

2aB + 1
2

4aF −1 , β >
α(bf +bB)χa

bF −aF +(af +aB)χa
the system is LD with

J = αχa(1 − αχa) l1 = αχa lL = bf

βχb

− bF + bb

β
lbulk = αχa

χa = 1

2α2

(
α + aF + aB −

√
(α + aF + aB)2 − 4α2aF

)
χb = bF − αχa(1 − αχa)

bF + bB

(16)

and where β < 1
2 +

2bB + 1
2

4bF −1 , α >
β(af +aB)χb

aF −bF +(bf +bB)χb
the system is HD with

J = 1 − βχb(1 − βχb) l1 = 1 − βχb(1 − βχb)

αχa

lL = 1 − βχb lbulk = 1 − βχb

χa = aF − βχb(1 − βχb)

aF + aB

χb = 1

2β2

(
β + bF + bB −

√
(β + bF + bB)2 − 4β2bF

)
.

(17)

Of particular mathematical interest is the invertible algebraic curve predicted as the phase
boundary between the LD and the HD phases which is described by

α = β(af + ab)
(
β + bF + bB −

√
(β + bF + bB)2 − 4β2bF

)

2β2(aF − bF ) + (bF + bb)
(
β + bF + bB −

√
(β + bF + bB)2 − 4β2bF

) (18)

and results in a curving boundary between phases. The phase diagrams of this curve can be
seen in figure 4. Note that this form reverts to a simple straight line when aF = bF .

The symmetry in the relationship can be easily seen if we express the phase boundary
curve as

(β(α + aF + aB) − α(β + bF + bB))(βbF (α + aF + aB) − αaF (β + bF + bB))

+ α2β2(bF − aF )2 = 0. (19)

4. Monte Carlo simulations

Because of the varying events in the model, it is not possible to use a standard particle picking
approach for the MC simulations. Instead we adopt a simple direct method, commonly called
the Gillespie algorithm [16], for the simulation. We simulate each choice of α and β such
that on average 106 hopping events at each site are sampled after a suitable warm-up time.
Finite size effects can create significant alterations to the phase diagrams in this type of
simulation; we run the bulk of our simulations at L = 300 which is sufficiently large for these
effects to be suppressed except for close to the phase boundary, where we make use of large
systems and larger run-times as required. We determine the phase boundaries by examining

7
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Figure 4. Phase portrait for the double-gated system with L = 300. We choose to have the
entrance slowly changing (aF = 0.4 and aB = 0.2) and the exit quickly changing (bF = 4.0 and
bB = 1.0). The MC phase boundary would begin at the upper-right corner of the plot shown. The
plot now diverges from the predicted line in the opposite fashion as shown in figure 3 as the slow
rates are on the exit. The qualitative effect of the two gates can be inferred from our earlier analysis
of the singly gated system. It is possible that the effect of the slow gate is sufficient to interfere
with the behaviour of the other gate, but we have not explored this effect in this study; the effects
can be inferred from the singly gated study.

the bulk density which changes discontinuously around the first-order transition between the
HD and the LD phases. Where possible this is done in an automated fashion by utilizing
the theoretically predicted values for the curves and assessing the best discontinuity between
them with a least-squares method augmented with iterative bisection. However, in some cases
this is not possible due to the loss of a theoretical description; here the fitting is simply done
by hand at evenly spaced points. This method also applies on the second-order boundaries,
but is not as clear. We supplement our predictions with reference to the bulk current which
continuously asymptotes to 1

2 in the max current phase.

4.1. Gated out only

We take two examples in this instance, first with values at the exit gate where bF and bB are
greater than unity, the internal hopping rate, and secondly with bF and bB less than unity. The
results for these two simulations are shown in figure 2 and figure 3 respectively. The agreement
between the theoretical results and the simulated results are excellent in the former case; there
are small deviations from the predicted values close to the phase boundary junction. This is
due to the increasing rounding off of the discontinuous transition between the bulk densities
as the system moves closer to achieving a maximal current phase. Where the rates of exit are
slower than the internal transport dynamics, then we have much less good agreement. Here,
whilst finite size effects are important, the primary source of disagreement will be due to
correlations from the exit conditions penetrating back into the bulk of the system. This can be
seen by the accuracy of fit of the improved mean-field case where these correlations are taken
into account in a limited fashion. The simulations imply that successive refinements to the MC
boundary will result in its disappearance and that only the LD and HD phases actually exist.

8
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In this study we have not gone beyond the simple first step improved mean-field theory; the
next iteration involves a cubic equation with significant extra algebraic complexity to produce
a closed form analytic solution, even utilizing symbolic computation. Numerical calculation
in a similar system has been demonstrated [17] but would not yield the desired result.

4.2. Gated in and gated out

We show a plot of a single example in this case, one with a mix of the conditions utilized
above.

This situation gives rise to a more interesting phase diagram with the curved boundary
between the low-density and high-density phases and can be seen in figure 4. The fit for small
values of α is excellent and follows the predicted curve with high accuracy. The discrepancy
due to the correlations now results in the simulated curve dipping below the predicted curve
as the entrance gate now has transport rates lower than the bulk. We anticipate that as in the
case of a single altered gate the MC phase cannot be maintained.

5. Discussion

We have presented here a simple extension of the asymmetric exclusion process that takes into
account exit and entrance rates that are not fixed, but depend on additional transiently binding
media that transport the particles on the track away from the confined system. We focused
here on describing such a system and computing the phase diagrams with a view that this
study is a stepping stone for later studies that may use the information presented here in order
to more widely apply the asymmetric exclusion process to transport problems, especially in
the biological sciences. There are a host of applications in this area. For example the particles
on the track can represent multiple ribosomes in kinetic protein production [2, 3] with rates
determined by tRNA abundance. The binding and unbinding rates then represent the chemical
attachment process and failure rate at the initiation of the translation process. Alternatively,
the particles might represent essential common cellular components such as ATP, electrons or
infrastructure proteins that are actively transported and then utilized at the terminus either by
a wide set of enzymes or by a specific conformational protein, such as in the construction of
bacterial flagellum [18]. Another situation is where the actively transported medium represents
an enzyme or similar that consumes a reagent at the terminus. In this case the reagent will be
consumed at the exit and in doing so will reduce the rate of ‘on’ binding, altering the behaviour
of the transport system as it proceeds. Not considered here is the potential for non-specific
binding of the ‘full’ receptor (or ‘empty’ initiator) to the target, off lattice, site which would
have the effect of blocking further transport but may have biological significance for some
systems.
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